在初中数学中,我们学习了“两点间的距离”、“点到直线的距离”、“平行线之间的距离”,距离的本质是“最短”,图形之间的距离总可以转化为两点之间的距离,如“垂线段最短”的性质,把点到直线的距离转化为点到点(垂足)的距离.
一般的,一个图形上的任意点A与另一个图形上的任意点B之间的距离的最小值叫做两个图形的距离.
(1)如图1,过A,B分别作垂线段AC、AD、BE、BF,则线段AB和直线l的距离为垂线段 的长度.
(2)如图2,Rt△ABC中,∠ACB=90°,∠B=30°,CD⊥AB,AD=2,那么线段AD与线段BC的距离为 .
(3)如图3,若长为1cm的线段CD与已知线段AB的距离为1.5cm,请用适当的方法表示满足条件的所有线段CD.
注:若满足条件的线段是有限的,请画出;若满足条件的线段是无限的,请用阴影表示其所在区域.(保留画图痕迹)
如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半
轴于E,双曲线(x>0)的图像经过点A,若S△BEC=10,则k等于 .
右图中,ABCD是梯形,面积是1。已知=
,
=
,
=
。问:
(1) 三角形ECD的面积是多少?
(2) 四边形EHFG的面积是多少?
两条并行线上共有k个点,用这k个点恰可以连接1309个三角形,那么k是多少?
甲、乙、丙三个工程队单独完成某项工程,分别需要140小时、87.5小时、77时。现在,甲和乙都最多只能工作60小时,丙最多只能工作35小时,三队工作时间之和为100小时完成工程,则甲最多工作多少小时?
如图,设ABCD是正方形,P是CD边的中点,点Q在BC边上,
且ÐAPQ=90°,AQ与BP相交于点T,则的值为多少?