如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,截面DAN交PC于M.
(1)求PB与平面ABCD所成角的大小;
(2)求证:PB⊥平面ADMN.
(本小题满分10分)选修4-1:几何证明选讲.如图,⊙O内切△ABC的边于D、E、F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.
⑴证明:圆心O在直线AD上;
⑵证明:点C是线段GD的中点.
(本小题满分12分)
已知定义在正实数集上的函数,
,其中
.设两曲线
,
有公共点,且在该点处的切线相同.
⑴用表示
,并求
的最大值;
⑵求的极值.
(本小题满分12分)
已知椭圆、抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,从每条曲线上各取两个点,将其坐标记录于下表中:
![]() |
3 |
![]() |
4 |
![]() |
![]() |
![]() |
0 |
![]() |
![]() |
⑴求的标准方程;
⑵是否存在直线满足条件:①过
的焦点
;②与
交不同两点
且满足
?若存在,求出直线
的方程;若不存在,说明理由.
(本小题满分12分)如图,在底面为直角梯形的四棱锥中
,
,
,
,
.
⑴求证:;
⑵当时,求此四棱锥的表面积.
(本小题满分12分)
已知数列满足
,
.
⑴求证:数列是等比数列,并写出数列
的通项公式;
⑵若数列满足
,求数列
的前n项和
.