已知函数(
、
为常数).
(Ⅰ)若,解不等式
;
(Ⅱ)若,当
时,
恒成立,求
的取值范围.
已知正项数列满足:
,
(1)求通项;
(2)若数列满足
,求数列
的前
和.
已知数列{}的前n项和
(n为正整数)。
(1)令,求证数列{
}是等差数列,并求数列{
}的通项公式;
(2)令,
,求
并证明:
<3.
已知椭圆C:(a>b>0),过点(0,1),且离心率为
.
(1)求椭圆C的方程;
(2)A,B为椭圆C的左右顶点,直线l:x=2与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,
恒为定值.
己知a∈R,函数
(1)若a=1,求曲线在点(2,f (2))处的切线方程;
(2)若|a|>1,求在闭区间[0,|2a|]上的最小值.
如图①,已知ABC是边长为l的等边三角形,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将
ABF沿AF折起,得到如图②所示的三棱锥A-BCF,其中BC=
.
(1)证明:DE//平面BCF;
(2)证明:CF平面ABF;
(3)当AD=时,求三棱锥F-DEG的体积