(本小题满分13分)已知点,点
,直线
(其中
).
(1)求直线所经过的定点
的坐标;
(2)若直线与线段
有公共点,求
的取值范围;
(3)若分别过且斜率为
的两条平行直线截直线
所得线段的长为
,求直线
的方程.
已知抛物线与坐标轴有三个交点,经过这三点的圆记为
.
(1)求实数的取值范围;
(2)设抛物线与x轴的交点从左到右分别为A、B,与y轴的交点为C,求A、B、C三点的坐标;
(3)设直线是抛物线在点A处的切线,试判断直线
是否也是圆
的切线?并说明理由.
某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级.对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均
为二等品.
(1)已知甲、乙两种产品每一道工序的加工结
果为A级的概率如表一所示,分别求生产
出的甲、乙产品为一等品的概率P甲、P乙;
(2)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在
(1)的条件下,求ξ、η的分布列及Eξ、
Eη;
(3)已知生产一件产品需用的工人数和资金额
如表三所示.该工厂有工人40名,可用资.
|
金60万元.设x、y分别表示生产甲、乙产
|
品的数量,在(2)的条件下,x、y为何
如图A、B是单位圆O上的点,且B在第二象限,C是圆与x轴正半轴的交点,A点的坐标为
,△AOB为正三角形.
(1)求sin∠COA的值;
(2)求的值.
已知函数f (x) = ax+ -3lnx.
(1) 当a = 2时,求f (x) 的最小值;
(2) 若f (x)在[1,e]上为单调函数,求实数a的取值范围.
如图,设抛物线(
)的准线与
轴交于
,焦点为
,以
、
为焦点,离心率
的椭圆
与抛物线
在
轴上方的一个交点为
.
(1)当时,求椭圆的方程;
(2)在(1)的条件下,直线经过椭圆
的右焦点
,与抛物线
交于
、
,如果以线段
为直径作圆,试判断点
与圆的位置关系,并说明理由;
(3)是否存在实数
,使得
的边长是连续的自然数,若存在,求出这样的实数
;若不存在,请说明理由.