(本题12分)如图,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)求四棱锥P—ABCD的表面积S.
椭圆
:
的左
右焦点分别是
,离心率为
,过
且垂直于
轴的直线被椭圆
截得的线段长为1.
(Ⅰ)求椭圆
的方程;
(Ⅱ)点
是椭圆
上除长轴端点外的任一点,连接
,设
的角平分线
交
的长轴于点
,求
的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点 作斜率为 的直线 ,使 与椭圆 有且只有一个公共点,设直线的 斜率分别为 .若 ,试证明 为定值,并求出这个定值.
已知函数
(
是自然对数的底数,
).
(Ⅰ)求
的单调区间、最大值;
(Ⅱ)讨论关于
的方程
根的个数。
设等差数列
的前
项和为
,且
,
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)设数列
的前
项和为
,
(
为常数),令
,求数列
的前
项和
.
甲
乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是
外,其余每局比赛甲队获胜的概率都是
.假设各局比赛结果相互独立.
(Ⅰ)分别求甲队以
胜利的概率;
(Ⅱ)若比赛结果为求
或
,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分
对方得1分.求乙队得分
的分布列及数学期望.
如图所示,在三棱锥
中,
平面
,
分别是
的中点,
与
交于
与
交于点
,连接
.
(Ⅰ)求证:
;
(Ⅱ)求二面角
的余弦值.