(本小题满分10分)选修4-4:坐标系于参数方程
在直角坐标系中,以O为极点,x正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,M,N分别为
与x轴,y轴的交点。曲线
的参数方程为
(
为参数)。
(Ⅰ)求M,N的极坐标,并写出的直角坐标方程;
(Ⅱ)求N点与曲线上的动点距离的最大值。
(本小题满分10分)
选修4-1:几何证明选讲
自外一点p引切线与
切于点A,M为PA的中点,过M引割线交
于B、C两点。
求证:
(Ⅰ);
(Ⅱ)。
已知函数。
(Ⅰ)试证函数f(x)的图象关于点对称;
(Ⅱ)若数列的通项公式为
, 求数列
的前
项和
;
(Ⅲ)设数列满足:
,
。设
。若(Ⅱ)中的
满足对任意不小于2的正整数
,
恒成立,试求
的最大值。
已知抛物线、椭圆和双曲线都经过点,它们在
轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点。
(Ⅰ)求这三条曲线的方程;
(Ⅱ)已知动直线l过点P(3,0),交抛物线于A、B两点,是否存在垂直于X轴的直线被以AP为直径的圆截得的弦长为定值?若存在,求出
的方程;若不存在,说明理由。
(本小题满分12分)假设某奶粉是经过A、B、C三道工序加工而成的,A、B、C工序的产品合格率分别为、
、
。已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;有两道合格为二等品;其它的为废品,不进入市场。
(Ⅰ)正式生产前先试生产2袋奶粉,求这2袋奶粉都为废品的概率;
(Ⅱ)设为加工工序中产品合格的次数,求
的分布列和数学期望。