(本小题满分12分)设等比数列的前
项和为
,已知
(1)求数列的通项公式;
(2)在与
之间插入
个数,使这
个数组成一个公差为
的等差数列,
①在数列{}中是否存在三项
,
,
(其中
成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由;
②记,求满足
的
值.
在平面直角坐标系中,
.
(1)求以线段为邻边的平行四边形的两条对角线的长;
(2)设实数满足
,求
的值.
(本小题满分14分)
已知数列,
,
(Ⅰ)求数列的通项公式
;
(Ⅱ)当时,求证:
(Ⅲ)若函数满足:
求证:
(本小题满分13分)
已知函数.
(Ⅰ)求函数的极大值;
(Ⅱ)若对满足
的任意实数
恒成立,求实数
的取值范围(这里
是自然对数的底数);
(Ⅲ)求证:对任意正数、
、
、
,恒有
.
(本小题满分12分)
某工厂去年的某产品的年销售量为100万只,每只产品的销售价为10元,每只产品固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计销售量从今年开始每年比上一年增加10万只,第n次投入后,每只产品的固定成本为(k>0,k为常数,
且n≥0),若产品销售价保持不变,第n次投入后的年利润为
万元.
(Ⅰ)求k的值,并求出的表达式;
(Ⅱ)若今年是第1年,问第几年年利润最高?最高利润为多少万元?
(本小题满分12分)
已知数列满足
,
,
(Ⅰ)设的通项公式;
(Ⅱ)求为何值时,
最小(不需要求
的最小值)