如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF,BF,DF.
(1)求证:△ABC≌△ABF;
(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.
在“有效学习儒家文化”活动中,甲、乙两校师生共150人进行了汇报演出,小林将甲、乙两校参加各项演出的人数绘制成如下不完整的统计图表,根据提供的信息解答下列问题:
甲校参加汇报演出的师生人数统计表
百分比 |
人数 |
|
话剧 |
50% |
m |
演讲 |
12% |
6 |
其他 |
n |
19 |
(1)m= ,n= ;
(2)计算乙校的扇形统计图中“话剧”的圆心角度数;
(3)哪个学校参加“话剧”的师生人数多?说明理由.
如图,点A是5×5网格图形中的一个格点,图中每个小正方形的边长为1,请在网格中按下列要求操作:
(1)以点A为其中的一个顶点,在图(1)中画一个面积等于3的格点直角三角形;
(2)以点A为其中的一个顶点,在图(2)中画一个面积等于的格点等腰直角三角形.
解方程:.
如图,在平面直角坐标系中,已知点A(2,3),B(6,3),连结AB,如果点P在直线y=x﹣1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“邻近点”.
(1)判断点C(,
)是否是线段AB的“邻近点” .
(2)若点Q(m,n)是线段AB的“邻近点”,则m的取值范围 .
已知抛物线y=ax2+2x+c与x轴交于A(1,0)和点B,与y轴交于点C(0,﹣3).
(1)求抛物线的解析式.
(2)如图1,已知点H的坐标为(0,1),设点M为y轴左侧抛物线上的一个动点,试猜想:是否存在这样的点M,使|MA﹣MH|的值最大,如果存在,请求出点M的坐标;如果不存在,请说明理由.
(3)如图2,过x轴上点E(﹣2,0)作ED⊥AB交抛物线于点D,在y轴上找一点F,使△EDF的周长最小,求出此时点F的坐标;
(4)如图3,已知点N(0,﹣1).问在抛物线上是否存在点Q(点Q在y轴的左侧),使得△QNC的面积与△QNA的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.