游客
题文

如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.

(1)求此抛物线的解析式;
(2)以点A为圆心,作与直线BC相切的⊙A,求⊙A的半径;
(3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:△PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,在矩形 ABCD 中, AB = 4 BC = 3 AF 平分 DAC ,分别交 DC BC 的延长线于点 E F ;连接 DF ,过点 A AH / / DF ,分别交 BD BF 于点 G H

(1)求 DE 的长;

(2)求证: 1 = DFC

我市某超市销售一种文具,进价为5元 / 件.售价为6元 / 件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为 x / ( x 6 ,且 x 是按0.5元的倍数上涨),当天销售利润为 y 元.

(1)求 y x 的函数关系式(不要求写出自变量的取值范围);

(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;

(3)若每件文具的利润不超过 80 % ,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.

如图,在 Rt Δ ABC 中, C = 90 ° D BC 上一点, AB = 5 BD = 1 tan B = 3 4

(1)求 AD 的长;

(2)求 sin α 的值.

一个不透明的口袋中有三个完全相同的小球,球上分别标有数字 1 ,1,2.第一次从袋中任意摸出一个小球(不放回),得到的数字作为点 M 的横坐标 x ;再从袋中余下的两个小球中任意摸出一个小球,得到的数字作为点 M 的纵坐标 y

(1)用列表法或树状图法,列出点 M ( x , y ) 的所有可能结果;

(2)求点 M ( x , y ) 在双曲线 y = 2 x 上的概率.

如图,一次函数 y = k 1 x + 5 ( k 1 < 0 ) 的图象与坐标轴交于 A B 两点,与反比例函数 y = k 2 x ( k 2 > 0 ) 的图象交于 M N 两点,过点 M MC y 轴于点 C ,已知 CM = 1

(1)求 k 2 k 1 的值;

(2)若 AM AN = 1 4 ,求反比例函数的解析式;

(3)在(2)的条件下,设点 P x 轴(除原点 O 外)上一点,将线段 CP 绕点 P 按顺时针或逆时针旋转 90 ° 得到线段 PQ ,当点 P 滑动时,点 Q 能否在反比例函数的图象上?如果能,求出所有的点 Q 的坐标;如果不能,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号