游客
题文

已知抛物线经过A(﹣1,0),B(3,0)两点,与y轴相交于点C,该抛物线的顶点为点D.

(1)求该抛物线的解析式及点D的坐标;
(2)连接AC,CD,BD,BC,设△AOC,△BOC,△BCD的面积分别为,用等式表示之间的数量关系,并说明理由;
(3)点M是线段AB上一动点(不包括点A和点B),过点M作MN∥BC交AC于点N,连接MC,是否存在点M使∠AMN=∠ACM?若存在,求出点M的坐标和此时刻直线MN的解析式;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题


如图1,滨海广场装有可利用风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯。该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC垂直于灯杆OF,路灯顶端E距离地面6米,DE=1.8米,,且根据我市的地理位置设定太阳能板AB的倾斜角为,AB=1.5米,CD=1米。为保证长为1米的风力发电机叶片无障碍旋转,叶片与太阳能板顶端A的最近距离不得少于0.5米,求灯杆OF至少要多高?(利用科学计算器可求得,结果保留两位小数)

(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.
(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.

如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E,F分别是AB,CD上的点,且BE=DF,连接EF∠BD于O.

(1)求证:BO=DO
(2)若EF⊥AB,延长EF∠AD的延长线于G,当FG=1时,求AD的长.

如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.

(1)求证:AC•CD=CP•BP;
(2)若AB=10,BC=12,当PD∥AB时,求BP的长.

如图,已知,在△ABC中,CA=CB,∠ACB=90°,E,F分别是CA,CB边的三等分点,将△ECF绕点C逆时针旋转α角(0°<α<90°),得到△MCN,连接AM,BN.

(1)求证:AM=BN;
(2)当MA∥CN时,试求旋转角α的余弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号