为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:
(1)本次接受调查的总人数是 人,并把条形统计图补充完整;
(2)在扇形统计图中,“步行”的人数所占的百分比是 ,“其他方式”所在扇形的圆心角度数是 ;
(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.
列方程或方程组解应用题:
我区教委要求各学校师生开展“彩虹读书活动”. 某校九年级一班和九年级二班的学生向学校图书馆借课外读物共196本,一班为每位学生借3本,二班为每位学生借2本,一班借的课外读物数量比二班借的课外读物数量多44本,求九年级一班和二班各有学生多少人?
已知:如图,中,
,
于
,
于
,
与
相交于点
.求证:
;
已知是一元二次方程
的实数根,求代数式
的值.
已知二次函数的图象与
轴交于点
(
,0)、点
,
与轴交于点
.
(1)求点坐标;
(2)点从点
出发以每秒1个单位的速度沿线段
向
点运动,到达点
后停止运动,过点
作
交
于点
,将四边形
沿
翻折,得到四边形
,设点
的运动时间为
.
①当为何值时,点
恰好落在二次函数
图象的对称轴上;
②设四边形
落在第一象限内的图形面积为
,求
关于
的函数关系式,并求出
的最大值.
已知:如图,正方形中,
为对角线,将
绕顶点
逆时针
旋转°(
),旋转后角的两边分别交
于点
、点
,交
于点
、
点,联结
.
(1)在的旋转过程
中,
的大小是否改变,若不变写出它的度数,若改变,写出它的变化范围(直接在答题卡上写出结果,不必证明);
(2)探究△与△
的面积的数量关系,写出结论并加以证明.