如图,,
是圆
的两条弦,它们相交于
的中点
,若
,
,
,求圆
的半径.
(1)设均为正数,求证:
;
(2)设数列和
的各项均为正数,
,两个数列同时满足下列三个条件:
①是等比数列;②
;③
.
求数列和
的通项公式.
已知实数,函数
.
(1)当时,求
的最小值;
(2)当时,判断
的单调性,并说明理由;
(3)求实数的范围,使得对于区间
上的任意三个实数
,都存在以
为边长的三角形.
已知椭圆的中心在原点,焦点在
轴上,长轴长为
,且点
在椭圆
上.
(1)求椭圆的方程;
(2)设是椭圆
长轴上的一个动点,过
作方向向量
的直线
交椭圆
于
、
两点,求证:
为定值.
钓鱼岛及其附属岛屿是中国固有领土,如图:点A、B、C分别表示钓鱼岛、南小岛、黄尾屿,点C在点A的北偏东47°方向,点B在点C的南偏西36°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为3海里.
(1)求A、C两点间的距离;(精确到0.01)
(2)某一时刻,我国一渔船在A点处因故障抛锚发出求救信号.一艘R国舰艇正从点C正东10海里的点P处以18海里/小时的速度接近渔船,其航线为PC
A(直线行进),而我东海某渔政船正位于点A南偏西60°方向20海里的点Q处,收到信号后赶往救助,其航线为先向正北航行8海里至点M处,再折向点A直线航行,航速为22海里/小时.渔政船能否先于R国舰艇赶到进行救助?说明理由.