(本小题满分14分)为了了解某年龄段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14),第二组[14,15),……,第五组[17,18],得到如下图所示的频率分布直方图.已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.
(1)本次调查一共抽取了多少名学生的百米成绩?
(2)估计该年龄段1000名学生的百米平均成绩是多少秒?
(3)若从第一、五组中随机取出两个成绩,求这两个成绩之差的绝对值大于1秒的概率.
已知椭圆的离心率为
,短轴一个端点到右焦点的距离为
.
⑴求椭圆的方程.
⑵设直线:
与椭圆
交于
两点,坐标原点
到直线
的距离为
,且
的面积为
,求实数
的值.
.(本题满分12分)
已知函数
(1)求函数的单调区间及最值;
(2)为何值时,方程
有三个不同的实根.
(
如图,长方体中,
,
,
,
分别是
的中点.
(1)求证:⊥平面
;
(2)求二面角的大小.
甲、乙两人同时参加某电台举办的有奖知识问答。约定甲,乙两人分别回答4个问题,答对一题得1分,不答或答错得0分,4个问题结束后以总分决定胜负。甲,乙回答正确的概率分别是和
,且不相互影响。求:
(1) 甲回答4次,至少得1分的概率;
(2) 甲恰好以3分的优势取胜的概率。
已知向量,
.设函数
.
(1)求函数的最小正周期
(2)若,求函数
的最大值.