游客
题文

(本小题满分12分)对于给定数列{an},如果存在实常数p,q,使得an+1=pan+q对于任意n∈N*都成立,我们称数列{an}是“M类数列”.
(1)已知数列{bn}是“M类数列”且bn= 3n 求它对应的实常数p,q的值;
(2)若数列{cn}满足c1=-l,cn - cn+l =2n(n∈N*),求数列{cn}的通项公式.判断{cn}是否为“M类数列”并说明理由。

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

求方程的无理根(精确到0.01)

设函数,且,其中是自然对数的底数.
(1)求的关系;
(2)若在其定义域内为单调函数,求的取值范围;
(3)设,若在上至少存在一点,使得成立,求实数
取值范围.

(本小题满分14分)
已知直线上有一个动点,过点作直线垂直于轴,动点上,且满足
(为坐标原点),记点的轨迹为.
(1)求曲线的方程;
(2)若直线是曲线的一条切线, 当点到直线的距离最短时,求直线的方程.

(本小题满分14分)
已知数列中,
(1)求证:数列是等比数列;
(2)设,求证:数列的前项和
(3)比较的大小()。

如图,在底面是正方形的四棱锥中,于点中点,上一点.
⑴求证:
⑵确定点在线段上的位置,使//平面,并说明理由.
⑶当二面角的大小为时,求与底面所成角的正切值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号