已知两直线和
,试确定
,
的值,使(1)
;(2)
,且
在
轴上的截距为-1.
如图,四棱锥中,底面ABCD为菱形,
,Q是AD的中点.
(Ⅰ)若,求证:平面PQB
平面PAD;
(Ⅱ)若平面APD平面ABCD,且
,点M在线段PC上,试确定点M的位置,使二面角
的大小为
,并求出
的值.
现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏。
(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;
(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量
的分布列与数学期望
.
【原创题】已知函数的部分图像如图所示,若
,且
.
(1)求函数的单调递增区间;
(2)若将的图像向左平移
个单位长度,得到函数
的图像,求函数
在区间
上的最大值和最小值.
选修4-5:不等式选讲
已知函数.
(Ⅰ)当时,解不等式
;
(Ⅱ)若的最小值为1,求a的值.
选修4—4:坐标系与参数方程
在平面直角坐标系中,圆
的参数方程为
(
为参数),直线
经过点
,倾斜角
.
(1)写出圆的标准方程和直线
的参数方程;
(2)设直线与圆
相交于
,
两点,求
的值.