游客
题文

如图,在平面直角坐标系中,直线l:y=x+4分别交x轴、y轴于点A、B,将△AOB绕点O顺时针旋转90°后得到△A′OB′.

(1)求直线A′B′的解析式;
(2)若直线A′B′与直线l相交于点C,求△A′BC的面积.

科目 数学   题型 解答题   难度 中等
知识点: 对称式和轮换对称式 一次函数的最值
登录免费查看答案和解析
相关试题

解不等式组:

解方程:

如图1,在直角坐标系中,已知点A(0,2)、点B(-2,0),过点B和线
段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE.
(1)填空:点D的坐标为(),点E的坐标为().
(2)若抛物线经过A、D、E三点,求该抛物线的解析式.
(3)若正方形和抛物线均以每秒个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E
落在y轴上时,正方形和抛物线均停止运动.
①在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,
并写出相应自变量t的取值范围.
②运动停止时,求抛物线的顶点坐标.

如图,C是以AB为直径的⊙O上一点,过O作OE⊥AC于点E,过点A作
⊙O的切线交OE的延长线于点F,连结CF并延长交BA的延长线于点P.
(1)求证:PC是⊙O的切线.
(2)若AF=1,OA=,求PC的长.

问题背景
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为: ,利用函数的图象或通过配方均可求得该函数的最大值.
提出新问题
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:,问题就转化为研究该函数的最大(小)值了.
解决问题
借鉴我们已有的研究函数的经验,探索函数的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数的图象:

x
···



1
2
3
4
···
y











(2)观察猜想:观察该函数的图象,猜想当x=时,函数有最值(填
“大”或“小”),是.
(3)推理论证:问题背景中提到,通过配方可求二次函数的最大值,请你尝试通过配方求函数的最大(小)值,以证明你的猜想. 〔提示:当时,

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号