如图,在四边形ABCD中,AB⊥BC,CD⊥BC,AB=2,BC=CD=4,AC、BD交于点O,在线段BC上,动点M以每秒1个单位长度的速度从点C出发向点B做匀速运动,同时动点N从点B出发向点C做匀速运动,当点M、N其中一点停止运动时,另一点也停止运动,分别过点M、N做BC的垂线,分别交AC、BD于点E、F,连接EF.若运动时间为x秒,在运动过程中四边形EMNF总为矩形(点M、N重合除外).
(1)求点N的运动速度;
(2)当x为多少时,矩形EMNF为正方形?
(3)当x为多少时,矩形EMNF的面积S最大?并求出最大值.
如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?
如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA =∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP // BC,且OP = 8,⊙O的半径为,求BC的长.
如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支
架底端与桌面顶端的距离OA = 75厘米.展开小桌板使桌面保持水平,此时CB⊥AO,∠AOB =∠ACB = 37°,
且支架长OB与桌面宽BC的长度之和等于OA的长度.求小桌板桌面的宽度BC.
(参考数据sin37° ≈ 0.6,cos37° ≈ 0.8,tan37° ≈ 0.75)
如图,在平面直角坐标系xOy中,⊙A与y轴相切于点B (0,3),与x轴相交于M、N两点.如果点M的坐标为(1,0),求点N的坐标.
如图,△ABC中,CD是边AB上的高,且.
(1)求证:△ACD∽△CBD;
(2)求∠ACB的大小.