游客
题文

平面内的两条直线有相交和平行两种位置关系

(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,直线轴交于点(4,0),与轴交于点,长方形的边轴上,.长方形由点与点重合的位置开始,以每秒1个单位长度的速度沿轴正方向作匀速直线运动,当点与点重合时停止运动.设长方形运动的时间为秒,长方形与△重合部分的面积为.

(1)求直线的解析式;
(2)当=1时,请判断点是否在直线上,并说明理由;
(3)请求出当为何值时,点在直线上;
(4)直接写出在整个运动过程中的函数关系式.

已知:在△中,于点相交于.

(1)求的度数;
(2)求证:△≌△
(3)探究的数量关系,并给予证明.

某市医药公司的甲、乙两仓库分别存有某种药品80箱和70箱,现需要将库存的药品调往A地100箱和B地50箱.
(1)设从甲仓库运送到A地的药品为箱,请填写下表:


甲仓库
乙仓库
总计



100箱



50箱
总计
80箱
70箱
150箱

(2)已知从甲、乙两仓库运送药品到两地的费用(元/箱)如右表所示.求总费用(元)与(箱)之间的函数关系式,并写出的取值范围;
(3)求出最低总费用,并说明总费用最低时的调配方案.

地名
费用(元/箱)
甲库
乙库
A地
14
20
B地
10
8

(1)作出△ABC关于轴对称的△A1B1C1,并写出△A1B1C1中顶点C1的坐标;
(2)将△ABC向右平移6个单位长度,作出平移后的△A2B2C2,并写出△A2B2C2中顶点C2的坐标;
(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.

如图,点B、D、C、F在一条直线上,且BD=FC,AB=EF.

(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是
(2)添加了条件后,证明△ABC≌△EFD.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号