游客
题文

反比例函数y1=(x>0,k≠0)的图象经过点(1,3),P点是直线y2=-x+6上一个动点,如图所示,设P点的横坐标为m,且满足-m+6>,过P点分别作PB⊥x轴、PA⊥y轴,垂足分别为B、A,与双曲线分别交于D、C两点,连接OC、OD、CD.

(1)求k的值并结合图象求出m的取值范围;
(2)在P点运动过程中,求线段OC最短时P点的坐标;
(3)将三角形OCD沿着CD翻折,点O的对应点为O′,得到四边形O′COD,问:四边形O′COD能否为菱形?若能,求出P点坐标;若不能,说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 平行线分线段成比例
登录免费查看答案和解析
相关试题

(本题10分)如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).

(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y 关于t的函数关系式,并求出y的最小值.

(本题8分))如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,,延长DB到点F,使,连接AF.

(1)证明:△BDE∽△FDA;
(2)试判断直线AF与⊙O的位置关系,并给出证明.

(本题8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到元购物券,至多可得到元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.

(本题6分)如图,已知一次函数与反比例函数的图象交于AB两点.

(1)求AB两点的坐标;
(2)观察图象,请直接写出一次函数值小于反比例函数值的的取值范围.

(本题6分)如图,水坝的横断面是梯形,背水坡AB的坡角∠BAD=,坡长AB=,为加强水坝强度,将坝底从A处向后水平延伸到F处,使新的背水坡的坡角∠F=,求AF的长度.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号