果农老张进行桃树科学管理试验.把一片桃树林分成甲、乙两部分,甲地块用新技术管理,乙地块用老方法管理,管理成本相同.在甲、乙两地块上各随机选取40棵桃树,根据每棵树的产量把桃树划分成A,B,C,D,E五个等级(甲、乙两地块的桃树等级划分标准相同,每组数据包括左端点不包括右端点).画出统计图如下:
(1)补齐直方图,求a的值及相应扇形的圆心角度数;
(2)选择合适的统计量,比较甲乙两地块的产量水平.并说明试验结果;
(3)若在甲地块随机抽查1棵桃树,求该桃树产量等级是B级的概率.
在平面直角坐标系中,直线y=kx-2经过点A(-2,0),求不等式4kx+3≤0的解集.
化简:
如图,∠MON=90°,A、B分别是OM、ON上的点,OB=4.点C是线段AB的中点,将线段AC以点A为旋转中心,沿顺时针方向旋转90°,得到线段AD,过点B作ON的垂线.
(1)当点D恰好落在垂线上时,求OA的长;
(2)过点D作DE⊥OM于点E,将(1)问中的△AOB以每秒2个单位的速度沿射线OM方向平移,记平移中的△AOB为△,当点O′与点E重合时停止平移.设平移的时间为t秒,△
与△DAE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围;
(3)在(2)问的平移过程中,若与线段
交于点P,连接
,
,
,是否存在这样的t,使△
是等腰三角形?若存在,求出t的值;若不存在,请说明理由.
如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(
,
),与y轴交于C(
,
)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的解析式;
(2)若抛物线的顶点为点D,求△BCD的面积;
(3)设M是(1)所得抛物线上第四象限内的一个动点,过点M作直线l⊥x 轴于点F,交直线BC于点N。试问:线段MN的长度是否存在最大值?若存在,求出它最大值及此时M点的坐标;若不存在,请说明理由.
已知,如图,在中,AE⊥BC,垂足为E,点F为CE上的一点,点G为CD上的一点,CF=CG,连接DF、EG、AG, AG=EG,∠1=∠2.
(1)若CE=4,AE=3,求BE的长;
(2)求证:∠CEG=∠AGE.