某中学举行数学知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图.根据图中所给出的信息解答下列问题:
(1)二等奖所占的比例是多少?
(2)这次数学知识竞赛获得二等奖的人数是多少?
(3)请将条形统计图补充完整;
(4)若给所有参赛学生每人发一张卡片,各自写上自己的名字,然后把卡片放入一个不透明的袋子里,摇匀后任意摸出一张,求摸出的卡片上是写有一等奖学生名字的概率.
如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.
(1)求证:四边形CEDF是平行四边形;
(2)若AB=3,AD=4,∠A=60°,求CE的长.
先化简,再求值:,其中x=﹣3.
如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5,且
,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=-
+c经过点E,且与AB边相交于点F.
(1)求证:△ABD∽△ODE;
(2)若M是BE的中点,连接MF,求证:MF⊥BD;
(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.
五边形ABCDE中,∠EAB=∠ABC=∠BCD=90°,AB=BC,且满足以点B为圆心,AB长为半径的圆弧AC与边DE相切于点F,连接BE,BD.
(1)如图1,求∠EBD的度数;
(2)如图2,连接AC,分别与BE,BD相交于点G,H,若AB=1,∠DBC=15°,求AG•HC的值.
阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:
解:将方程②变形:4x+10y+y="5" 即2(2x+5y)+y=5③
把方程①带入③得:2×3+y=5,∴y=﹣1
把y=﹣1代入①得x=4,∴方程组的解为.
请你解决以下问题:
(1)模仿小军的“整体代换”法解方程组
(2)已知x,y满足方程组.
(i)求的值;
(ii)求的值.