某班100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
分数段 |
[50,60) |
[60,70) |
[70,80) |
[80,90) |
x∶y |
1∶1 |
2∶1 |
3∶4 |
4∶5 |
如图,已知双曲线的左、右顶点分别为A1、A2,动直线l:y=kx+m与圆
相切,且与双曲线左、右两支的交点分别为
.
(1)求k的取值范围,并求的最小值;
(2)记直线的斜率为
,直线
的斜率为
,那么
是定值吗?证明你的结论.
设是首项为
,公差为
的等差数列(d≠0),
是其前
项和.记bn=
,
,其中
为实数.
(1) 若,且
,
,
成等比数列,证明:Snk=n2Sk(k,n∈N+);
(2) 若是等差数列,证明:
.
设数列的前
项和为
.已知
,
=an+1-
n2-n-
(
)
(1) 求的值;
(2) 求数列的通项公式;
(3) 证明:对一切正整数,有
+
+…+
<
.
已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;
(2)求数列{}的前n项和.
已知函数f(x)=(2cos2x-1)sin2x+cos4x
(1)求f(x)的最小正周期及最大值。
(2)设A,B,C为△ABC的三个内角,若cosB=,f(
)=-
,且角A为钝角,求sinC