(本小题满分14分)已知,设:函数在R上单调递减;:函数的图象与x轴至少有一个交点.如果P与Q有且只有一个正确,求的取值范围.
数列满足,,. (1)证明:数列是等差数列; (2)设,求数列的前项和.
在中为内角的对边,且. (1)求的大小; (2)若,试判断的形状.
己知函数. (Ⅰ)求的单调区间; (Ⅱ)若时,恒成立,求的取值范围; (Ⅲ)设函数,若的图象与的图象在区间上有两个交点,求的取值范围.
设函数 (Ⅰ)当,求函数的单调区间与极值; (Ⅱ)若函数在上是增函数,求实数的取值范围.
已知函数,其导函数的图象过原点. (Ⅰ)当时,求函数的图象在处的切线方程; (Ⅱ)若存在,使得,求的最大值;
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号