(本小题共14分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=
.
(Ⅰ)若点M是棱PC的中点,求证:PA // 平面BMQ;
(Ⅱ)求证:平面PQB⊥平面PAD;
(Ⅲ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值 .
甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率均为,各局比赛的结束相互独立,第1局甲当裁判.
(1)求第4局甲当裁判的概率;
(2)X表示前4局中乙当裁判的次数,求X的数学期望.
下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天
(1)求此人到达当日空气重度污染的概率
(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望.
(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)
一盒中装有大小和质地均相同的12个小球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1个球,求:
(1)取出的小球是红球或黑球的概率;
(2)取出的小球是红球或黑球或白球的概率.
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示:
一次购物量 |
1至4件 |
5至8件 |
9至12件 |
13至16件 |
17件及以上 |
顾客数(人) |
x |
30 |
25 |
y |
10 |
结算时间 (分钟/人) |
1 |
1.5 |
2 |
2.5 |
3 |
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率).
假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:
(1)估计甲品牌产品寿命小于200小时的概率;
(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.