游客
题文

(本小题共14分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=

(Ⅰ)若点M是棱PC的中点,求证:PA // 平面BMQ;
(Ⅱ)求证:平面PQB⊥平面PAD;
(Ⅲ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值 .

科目 数学   题型 解答题   难度 较难
知识点: 空间向量的应用 平行线法
登录免费查看答案和解析
相关试题

已知,设命题P: ;命题Q:函数f(x)=3x2+2mx+m+有两个不同的零点.求使命题“P或Q”为真命题的实数的取值范围.

已知集合
(I)当=3时,求
(Ⅱ)若,求实数的值.

设函数f(θ)=sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(1)若点P的坐标为,求f(θ)的值;
(2)若点P(x,y)为平面区域Ω:,上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.

已知p:∀x∈R,2x>m(x2+1),q:∃x0∈R,+2x0-m-1=0,且p∧q为真,求实数m的取值范围.

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值(精确到1辆/小时).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号