如图,已知:AD∥BC,AD=CB,AE=CF,
(1)请问∠B=∠D吗?为什么?
(2)不改变其他条件,提出一个你认为正确的结论,并说明理由?
如图,在平面直角坐标系xOy中,二次函数的图象与
轴交于
(-1,0)、
(3,0)两点, 顶点为
.
(1) 求此二次函数解析式;
(2) 点为点
关于x轴的对称点,过点
作直线
:
交BD于点E,过点
作直线
∥
交直线
于
点.问:在四边形ABKD的内部是否存在点P,使得它到四边形ABKD四边的距离都相等,若存在,请求出点P的坐标;若不存在,请说明理由;
(3) 在(2)的条件下,若、
分别为直线
和直线
上的两个动点,连结
、
、
,求
和的最小值.
在Rt△ABC中,∠ACB=90°,tan∠BAC=. 点D在边AC上(不与A,C重合),连结BD,F为BD中点.
(1)若过点D作DE⊥AB于E,连结CF、EF、CE,如图1.设,则k =;
(2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示.求证:BE-DE=2CF;
(3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.
已知,二次函数的图象如图所示.
(1)若二次函数的对称轴方程为,求二次函数的解析式;
(2)已知一次函数,点
是x轴上的一个动点.若在(1)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数
的图象于点N.若只有当1<m<
时,点M位于点N的上方,求这个一次函数的解析式;
(3)若一元二次方程有实数根,请你构造恰当的函数,根据图象直接写出
的最大值.
阅读下面材料:
问题:如图①,在△ABC中, D是BC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的长.
小明同学的解题思路是:利用轴对称,把△ADC进行翻折,再经过推理、计算使问题得到解决.
(1)请你回答:图中BD的长为;
(2)参考小明的思路,探究并解答问题:如图②,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD和AB的长.
图①图②
在平面直角坐标系xOy中,一次函数y=kx+b与反比例函数y=
的图象交于A(1,6),B(a,3)两点.
(1)求k,k
的值;
(2)如图,点D在x轴上,在梯形OBCD中,BC∥OD,OB=DC,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为18时,求PE:PC的值.