在平面直角坐标系 中, 的半径为1, , 为 外两点, .
给出如下定义:平移线段 ,得到 的弦 , 分别为点 , 的对应点),线段 长度的最小值称为线段 到 的“平移距离”.
(1)如图,平移线段 得到 的长度为1的弦 和 ,则这两条弦的位置关系是 ;在点 , , , 中,连接点 与点 的线段的长度等于线段 到 的“平移距离”;
(2)若点 , 都在直线 上,记线段 到 的“平移距离”为 ,求 的最小值;
(3)若点 的坐标为 ,记线段 到 的“平移距离”为 ,直接写出 的取值范围.
在 中, , , 是 的中点. 为直线 上一动点,连接 .过点 作 ,交直线 于点 ,连接 .
(1)如图1,当 是线段 的中点时,设 , ,求 的长(用含 , 的式子表示);
(2)当点 在线段 的延长线上时,依题意补全图2,用等式表示线段 , , 之间的数量关系,并证明.
在平面直角坐标系 中, , , , 为抛物线 上任意两点,其中 .
(1)若抛物线的对称轴为 ,当 , 为何值时, ;
(2)设抛物线的对称轴为 ,若对于 ,都有 ,求 的取值范围.
小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:
.小云所住小区5月1日至30日的厨余垃圾分出量统计图:
.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:
时段 |
1日至10日 |
11日至20日 |
21日至30日 |
平均数 |
100 |
170 |
250 |
(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 173 (结果取整数);
(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 倍(结果保留小数点后一位);
(3)记该小区5月1日至10日的厨余垃圾分出量的方差为 ,5月11日至20日的厨余垃圾分出量的方差为 ,5月21日至30日的厨余垃圾分出量的方差为 .直接写出 , , 的大小关系.
小云在学习过程中遇到一个函数 .
下面是小云对其探究的过程,请补充完整:
(1)当 时,对于函数 ,即 ,当 时, 随 的增大而 ,且 ;对于函数 ,当 时, 随 的增大而 ,且 ;结合上述分析,进一步探究发现,对于函数 ,当 时, 随 的增大而 .
(2)当 时,对于函数 ,当 时, 与 的几组对应值如下表:
|
0 |
|
1 |
|
2 |
|
3 |
|
|
0 |
|
|
|
1 |
|
|
|
结合上表,进一步探究发现,当 时, 随 的增大而增大.在平面直角坐标系 中,画出当 时的函数 的图象.
(3)过点 , 作平行于 轴的直线 ,结合(1)(2)的分析,解决问题:若直线 与函数 的图象有两个交点,则 的最大值是 .