游客
题文

选修4—4:坐标系与参数方程
极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴,曲线的极坐标方程为,曲线的参数方程为为参数,),射线与曲线交于(不包括极点O)三点
(1)求证:
(2)当时,B,C两点在曲线上,求的值

科目 数学   题型 解答题   难度 较难
知识点: 参数方程
登录免费查看答案和解析
相关试题

(本小题满分10分)选修4-1 :几何证明选讲
直线交圆两点,是直径,平分,交圆于点,过

(Ⅰ)求证:是圆的切线;
(Ⅱ)若,求的面积。

(本小题满分12分)已知函数
(Ⅰ)求函数的单调区间和极值;
(Ⅱ)若对任意的,恒有成立,求的取值范围;
(Ⅲ)证明:).

(本小题满分12分)已知椭圆C:(a>b>0)与y轴的交点为A,B(点A位于点B的上方),F为左焦点,原点O到直线FA的距离为b.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)设b=2,直线y=kx+4与椭圆C交于不同的两点M,N,求证:直线BM与直线AN的交点G在定直线上.

(本小题满分12分)如图,四棱锥,侧面是边长为的正三角形,且与底面垂直,底面的菱形,的中点.

(Ⅰ)求证:
(Ⅱ)求点到平面的距离.

(本小题满分12分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):


“厨余垃圾”箱
“可回收物”箱
“其他垃圾”箱
厨余垃圾
400
100
100
可回收物
30
240
30
其他垃圾
20
20
60

(Ⅰ)试估计厨余垃圾投放正确的概率;
(Ⅱ)试估计生活垃圾投放错误的概率;
(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,其中,.当数据的方差最大时,写出的值(结论不要求证明),并求此时的值.(注:方差,其中的平均数)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号