为了研究过山车的原理,某兴趣小组提出了下列设想:取一个与水平方向夹角为37°、长为l = 2.0m的粗糙倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道除 AB 段以外都是光滑的。其AB 与BC 轨道以微小圆弧相接,如图所示.一个小物块以初速度=4.0m/s从某一高处水平抛出,到A点时速度方向恰好沿 AB 方向,并沿倾斜轨道滑下.已知物块与倾斜轨道的动摩擦因数 μ = 0.50.(g=10 m/s2、sin37°= 0.60、cos37° =0.80)
(1)求小物块到达A点时速度。
(2)要使小物块不离开轨道,并从轨道DE滑出,求竖直圆弧轨道的半径应该满足什么条件?
(3)为了让小物块不离开轨道,并且能够滑回倾斜轨道 AB,则竖直圆轨道的半径应该满足什么条件?
如图所示为质谱仪上的原理图,M为粒子加速器,电压为U1=5000V;N为速度选择器, 磁场与电场正交,磁感应强度为B1=0.2T,板间距离为d =0.06m;P为一个边长为l的正方形abcd的磁场区,磁感应强度为B2=0.1T,方向垂直纸面向外,其中dc的中点S开有小孔,外侧紧贴dc放置一块荧光屏。今有一比荷为的正离子从静止开始经加速后,恰好通过速度选择器,从a孔以平行于ab方向进入abcd磁场区,正离子刚好经过小孔S 打在荧光屏上。求:
(1)粒子离开加速器时的速度v;
(2)速度选择器的电压U2;
(3)正方形abcd边长l。
如图所示,用电阻为R的硬导线做成一边长为L的方框。将方框放在绝缘的水平木板上,与木板最大的摩擦力为。在方框右半部加上均匀增加的竖直向下的磁场区域中,磁感应强度
。求:
(1)导线中感应电流的大小;
(2)经过多少时间方框开始运动。
如图所示,在竖直平面内有两个等量的异种点电荷,其电荷量分别为+Q、-Q,固定在同一个水平直线上相距为的A、B两点。在AB连线的垂直平分线有固定光滑竖直绝缘杆,在C点有一个质量为m、电荷量为-q小环(可视为点电荷)静止释放。已知ABC构成正三角形,求:
(1)在C点杆对小环的作用力大小;
(2)小环滑到D点的速度大小。
如图所示,质量分别为M和m的两个小物块用轻绳连接,绳跨过倾角α=37°的斜面顶端的定滑轮,绳平行于斜面,滑轮与转轴之间的摩擦不计,已知M=2m=2kg。开始时,用手托物块M,使M离水平面的高度为h=0.5m,物块m静止在斜面底端。撤去手,使M和m从静止开始做匀加速直线运动,经过t=0.5s,M落到水平面上,停止运动,由于绳子松弛,之后物块m不再受到绳子的拉力作用。求:(g取10m/s2)
(1)物块M竖直向下运动过程加速度的大小;
(2)物块m所受到的摩擦力大小
(3)物块m沿斜面运动的最大距离?(假设斜面足够长)
如图所示的传送带中,水平部分AB长2m,BC与水平面的夹角为37°,且BC=4m,整条皮带沿图示方向以2m/s的速度运动。现把一个物体轻轻地放在A点上,它将被皮带送到C点,假设在这一过程中物体始终没有离开传送带飞出去。若物体与皮带间的动摩擦因数为0.25。求
(1)分别画出物体在AB、BC上运动时各阶段的受力图;
(2)物体在AB段加速的距离;
(3)物体从A点被送到C点所用的时间。(sin37°=0.6,cos37°=0.8,g=10m/s2)