(本小题满分14分)设函数.
(Ⅰ)求函数的单调区间、极大值和极小值.
(Ⅱ)若时,恒有
,求实数
的取值范围.
(本小题12分) 正项数列{an}满足a1=2,点An()在双曲线y2-x2=1上,点(
)在直线y=-
x+1上,其中Tn是数列{bn}的前n项和。
①求数列{an}、{bn}的通项公式;
②设Cn=anbn,证明 Cn+1<Cn
③若m-7anbn>0恒成立,求正整数m的最小值。
(本小题12分) 某工厂组织工人参加上岗测试,每位测试者最多有三次机会,一旦某次测试通过,便可上岗工作,不再参加以后的测试;否则就一直测试到第三次为止。设每位工人每次测试通过的概率依次为0.2,0.5,0.5,每次测试相互独立。
(1)求工人甲在这次上岗测试中参加考试次数为2、3的概率分别是多少?
(2)若有4位工人参加这次测试,求至少有一人不能上岗的概率。
(本小题12分) =(
),
=
,f(x)=
①求f(x)图象对称中心坐标
②若△ABC三边a、b、c满足b2=ac,且b边所对角为x,求x的范围及f(x)值域。
已知函数.
(Ⅰ)当时,试判断
的单调性并给予证明;
(Ⅱ)若有两个极值点
.
(i) 求实数a的取值范围;
(ii)证明:。 (注:
是自然对数的底数)
已知点,
是抛物线
上相异两点,且满足
.
(Ⅰ)若的中垂线经过点
,求直线
的方程;
(Ⅱ)若的中垂线交
轴于点
,求
的面积的最大值及此时直线
的方程.