(本小题满分10分) 选修4-4:极坐标系与参数方程
在极坐标系中曲线的极坐标方程为
,点
.以极点
为原点,以极轴为
轴正半轴建立直角坐标系.斜率为
的直线
过点
,且与曲线
交于
两点.
(Ⅰ)求出曲线的直角坐标方程和直线
的参数方程;
(Ⅱ)求点到两点
的距离之积.
设函数与数列
满足关系:(1) a1.>a, 其中a是方程
的实根,(2) an+1=
(n
N+ ) ,如果
的导数满足0<
<1
(1)证明: an>a(2)试判断an与an+1的大小,并证明结论。
如图,有一块半椭圆形钢板,其半轴长为,短半轴长为
,计划将此钢板切割成等腰梯形的形状,下底
是半椭圆的短轴,上底
的端点在椭圆上,记
,梯形面积为
.
(1)求面积以
为自变量的函数式,并写出其定义域;
(2)求面积的最大值.
设集合A={2,4,6,8},B={1,3,5,7,9},今从A中取一个数作为十位数字,从B中取一个数作为个位数字,问:
(1)能组成多少个不同的两位数?
(2)能组成多少个十位数字小于个位数字的两位数?
(3)能组成多少个能被3整除的两位数?
设函数设
,试比较
与
的大小
已知函数,其中
.
(1)当时,求曲线
在点
处的切线方程;
(2)当时,求函数
的单调区间与极值.