如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=PC=2.E是PB的中点.
(1)求证:平面EAC⊥平面PBC;
(2)求二面角P—AC—E的余弦值;
(3)求直线PA与平面EAC所成角的正弦值.
如图所示棱锥P—ABCD中,底面ABCD是正方形,边长为a,PD=a,PA=PC=,且PD是四棱锥的高.
(1)在这个四棱锥中放入一个球,求球的最大半径;
(2)求四棱锥外接球的半径.
在球内有相距1 cm的两个平行截面,截面面积分别是5π cm2和8π cm2,球心不在截面之间,求球面的面积.
如图是一个底面直径为20 cm的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm,高为20 cm的一个圆锥形铅锤,当铅锤从水中取出后,杯里的水将下降几厘米?(π=3.14)
已知一个球内切于圆锥. 求证:它们的全面积之比等于它们的体积之比.
设圆台的高为3,如图,在轴截面中母线AA1与底面圆直径AB的夹角为60°,轴截面中的一条对角线垂直于腰,求圆台的体积.