(本小题满分12分)
如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=,F是BC的中点.
(Ⅰ)求证:DA⊥平面PAC;
(Ⅱ)点G为线段PD的中点,证明CG∥平面PAF;
(Ⅲ)求三棱锥A—CDG的体积.
(本小题满分12分)
已知数列是等比数列,
,且
是
的等差中项.
(Ⅰ) 求数列的通项公式
;
(Ⅱ)若,求数列
的前n项和
.
(本小题满分10分)
在中,
(Ⅰ)求的值 ;(Ⅱ)求
的值。
已知函数.
(Ⅰ)若曲线在
和
处的切线互相平行,求
的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意
,均存在
,使得
,求
的取值范围.
在平面直角坐标系中,点
与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于
.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设直线AP和BP分别与直线交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。