函数f(x)是R上的奇函数,且当x>0时,函数的解析式为.
(1)用定义证明f(x)在(0,+∞)上是减函数;
(2)求当x<0时,函数的解析式.
(3)用分段函数形式写出函数f(x)在R上的解析式.当f(a)=3时,求a的值。
((本小题满分14分)
(本小题满分12分)
将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落过程中,将3次遇到黑色障碍物,最后落入袋或
袋中.已知小球每次遇到黑色障碍物时向左、右两边下落的概率都是
(Ⅰ)求小球落入袋中的概率
(Ⅱ)在容器入口处依次放入4个小球,记X为落入袋中小球的个数,试求X=3的概率和X的数学期望
.
(本小题满分13分)
如图,过抛物线(
>0)的顶点作两条互相垂直的弦OA、OB
⑴设OA的斜率为k,试用k表示点A、B的坐标
⑵求弦AB中点M的轨迹方程
(本小题满分12分)
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元)。
(Ⅰ)将总费用y表示为x的函数
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
(本小题满分12分)
抛物线,直线
所围成的图形的面积