如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8)。动点M、N分别从O、B同时出发,以每秒1个单位的速度运动。其中,点M沿OA向终点A运动,点N沿BC向终点C运动。过点N作NP⊥BC,交AC于P,连结MP。已知动点运动了x秒。
(1)P点的坐标为( , );(用含x的代数式表示)
(2)试求 ⊿MPA面积的最大值,并求此时x的值。
(3)请你探索:当x为何值时,⊿MPA是一个等腰三角形?
你发现了几种情况?写出你的研究成果。
如图,在正方形ABCD中,E、F分别是边AD、CD上的点,,连接EF并延长交BC的延长线于点G.
(1)求证:∽
;
(2)若正方形的边长为4,求BG的长.
小薇将一副三角尺如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长,若已知CD=2,求AC的长.
甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:吨/公顷):
品种 |
第1年 |
第2年 |
第3年 |
第4年 |
第5年 |
甲 |
9.8 |
9.9 |
10.1 |
10 |
10.2 |
乙 |
9.4 |
10.3 |
10.8 |
9.7 |
9.8 |
为使水稻品种的产量比较稳定,根据题中所给的数据,你选择哪种水稻品种?请说明理由.
如图,是⊙O的一条弦,
,垂足为C,交⊙O于点D,点E在⊙O上.
(1)若,求
的度数;
(2)若,
,求
的长.
如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16m,AE=8m,抛物线的顶点C到ED的距离是11m。试以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系,求题中抛物线的函数表达式.