(本小题满分16分)如图,有一直径为8米的半圆形空地,现计划种植甲、乙两种水果,已知单位面积种植甲水果的经济价值是种植乙水果经济价值的5倍,但种植甲水果需要有辅助光照.半圆周上的处恰有一可旋转光源满足甲水果生长的需要,该光源照射范围是
,点
在直径
上,且
.
(1)若,求
的长;
(2)设, 求该空地产生最大经济价值时种植甲种水果的面积.
若圆C过点M(0,1)且与直线相切,设圆心C的轨迹为曲线E,A、B(A在y轴的右侧)为曲线E上的两点,点
,且满足
(Ⅰ)求曲线E的方程;
(Ⅱ)若t=6,直线AB的斜率为,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;
(Ⅲ)分别过A、B作曲线E的切线,两条切线交于点,若点
恰好在直线
上,求证:t与
均为定值.
已知抛物线,
为坐标原点.
(Ⅰ)过点作两相互垂直的弦
,设
的横坐标为
,用
表示△
的面积,并求△
面积的最小值;
(Ⅱ)过抛物线上一点引圆
的两条切线
,分别交抛物线于点
, 连接
,求直线
的斜率.
设数列的前
项和为
,且满足
.
(Ⅰ)求证:数列为等比数列;
(Ⅱ)求通项公式;
(Ⅲ)若数列是首项为1,公差为2的等差数列,求数列
的前
项和为
.
在中,角
,
,
所对的边长分别是
,
,
. 满足
.
(Ⅰ)求角的大小;
(Ⅱ)求的最大值.
申请某种许可证,根据规定需要通过统一考试才能获得,且考试最多允许考四次. 设表示一位申请者经过考试的次数,据统计数据分析知
的概率分布如下:
![]() |
1 |
2 |
3 |
4 |
P |
0.1 |
![]() |
0.3 |
0.1 |
(Ⅰ)求一位申请者所经过的平均考试次数;
(Ⅱ)已知每名申请者参加次考试需缴纳费用
(单位:元),求两位申请者所需费用的和小于500元的概率;
(Ⅲ)在(Ⅱ)的条件下, 4位申请者中获得许可证的考试费用低于300元的人数记为,求
的分布列.