如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D.
(1)求b,c的值;
(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)在(2)的条件下:
①求以点E、B、F、D为顶点的四边形的面积;
②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.
(8分) 如图,⊿ABC在平面直角坐标系内三顶点坐标分别为
(1)先画出⊿ABC;
(2)以B
为位似中心,画出⊿A1B1C1,使⊿A1B1C1与⊿ABC相
似且相似比为2:1
用适当的方法解下列方程(每小题4分,共16分)(1)(3x-1)2=(x+1)2
(2)x2-2x-3=0
(3)
(4)用配方法解方程:x2-4x+1=0
如图,在矩形ABCD中,,
,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动。如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与
相似?
如图(1),在⊿ABC中,AE=EB,AF=FC,则EF与BC存在以下关系:EF∥BC, ;将AC沿BC方向平移到DH,得图(2),沿CB方向平移到DH得图(3),图(2)中AD与BH存在关系:EF∥AD,
;,那么在图(3)中是否有类似于图(1)(2)中的结论,请把猜想的结论填在方框内,并就图(3)的结论加以证明。
如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动。设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式
(2)当线段PQ与线段AB相交于点O,且2AO=OB时,求t的值.
(3)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?
(4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.