去年5月31日世界卫生组织发起的第25个“世界无烟日”,为了更好的宣传吸烟的危害,某中学八年级一半数学兴趣小组设计了如下调查问卷,在五四广场随机调查了部分吸烟人群,并将调查结果绘制成统计图.
(1)本次接受调查的中人数是 人,并把条形统计图补充完整.
(2)在扇形统计图中,E选项所在扇形的圆心角的度数是 .
(3)若青岛市约有烟民14万人,求对吸烟有害持“无所谓”态度的约有多少人.
如图,已知等边,以边BC为直径的半圆与边AB,AC分别交于点D、E,过点D作DF⊥AC于点F,
(1)判断DF与⊙O的位置关系,并证明你的结论;
(2)过点F作FH⊥BC于点H,若等边的边长为8,求AF,FH的长。
如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示.
(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标;
(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长.
已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E,连接OC,OC=5.
(1)若CD=8,求BE的长;
(2)若∠AOC=150°,求扇形OAC的面积
如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合.
(1)三角尺旋转了 度。
(2)连接CD,试判断△CBD的形状;
(3)求∠BDC的度数。
在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两球上的数字之和,当和小于9时小明获胜,反之小东获胜.
(1)请用树状图或列表的方法,求小明获胜的概率;
(2)这个游戏公平吗?请说明理由.