游客
题文

(本小题满分12分)某项选拔共有三轮考核,每轮设有一个问题,回答问题正确者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为,且各轮问题能否正确回答互不影响.
(1)求该选手被淘汰的概率;
(2)记该选手在考核中回答问题的个数为,求随机变量的分布列与数学期望.

科目 数学   题型 解答题   难度 中等
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

设函数的定义域为(0,).
(Ⅰ)求函数上的最小值;
(Ⅱ)设函数,如果,且,证明:.

如图,椭圆经过点离心率,直线的方程为.

(Ⅰ)求椭圆的方程;
(Ⅱ)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为问:是否存在常数,使得若存在求的值;若不存在,说明理由.

如图,三棱锥中,底面的中点,点上,且.

(Ⅰ)求证:平面平面
(Ⅱ)求平面与平面所成的二面角的平面角(锐角)的余弦值.

一个袋子里装有7个球, 其中有红球4个, 编号分别为1,2,3,4; 白球3个, 编号分别为2,3,4. 从袋子中任取4个球 (假设取到任何一个球的可能性相同).
(Ⅰ) 求取出的4个球中, 含有编号为3的球的概率;
(Ⅱ) 在取出的4个球中, 红球编号的最大值设为X ,求随机变量X的分布列和数学期望.

在△中,内角的对边分别为,已知.
(Ⅰ)求
(Ⅱ)若,求△面积的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号