(本小题满分12分)
在锐角△ABC中,已知内角
A、B、C的对边分别为a、b、c.向量
,
,且向量
、
共线。
(1)求角B的大小;
(2)如果b=1,求△ABC的面积S△ABC的最大值。
(本小题共13分)
设集合,对于
,记
且
,由所有
组成的集合设为
.
(Ⅰ)求的值;
(Ⅱ)设集合,对任意
,试求
;
(Ⅲ)设,试求
的概率.
(本小题共14分)
已知椭圆和圆
:
,过椭圆上一点
引圆
的两条切线,切点分别为
.
(Ⅰ)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率
;
(ⅱ)若椭圆上存在点,使得
,求椭圆离心率
的取值范围;
(Ⅱ)设直线与
轴、
轴分别交于点
,
,求证:
为定值.
(本小题共14分)
设函数(
).
(Ⅰ)当时,求
的极值;
(Ⅱ)当时,求
的单调区间.
(本小题共13分)
某学校高一年级开设了五门选修课.为了培养学生的兴趣爱好,要求每个学生必须参加且只能选修
一门课程.假设某班甲、乙、丙三名学生对这五门课程的选择是等可能的.
(Ⅰ)求甲、乙、丙三名学生参加五门选修课的所有选法种数;
(Ⅱ)求甲、乙、丙三名学生中至少有两名学生选修同一门课程的概率;
(Ⅲ)设随机变量为甲、乙、丙这三名学生参加
课程的人数,求
的分布列与数学期望.