已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合.若曲线C1的方程为ρ2=8ρsinθ﹣15,曲线 C2的方程为(
为参数).
(1)将C1的方程化为直角坐标方程;
(2)若C2上的点Q对应的参数为,P为C1上的动点,求PQ的最小值.
如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=PC=2.E是PB的中点.
(1)求证:平面EAC⊥平面PBC;
(2)求二面角P—AC—E的余弦值;
(3)求直线PA与平面EAC所成角的正弦值.
某建筑工地决定建造一批简易房(房型为长方体状,房高2.5米),前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(即:钢板的高均为2.5米,用钢板的长度乘以单价就是这块钢板的价格),每米单价:彩色钢板为450元,复合钢板为200元.房顶用其它材料建造,每平方米材料费为200元.每套房材料费控制在32000元以内.
(1)设房前面墙的长为x,两侧墙的长为y,所用材料费为p,试用x,y表示p;
(2)简易房面积S的最大值是多少?并求当S最大时,前面墙的长度应设计为多少米?
如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明:PA∥平面EDB;
(2)证明:PB⊥平面EFD.
如图,△中,
,
,
,在三角形内挖去一个半圆(圆心
在边
上,半圆与
、
分别相切于点
、
,与
交于点
),将△
绕直线
旋转一周得到一个旋转体.
(1)求该几何体中间一个空心球的表面积的大小;
(2)求图中阴影部分绕直线旋转一周所得旋转体的体积.
已知函数的定义域为A,
(1)求A;
(2)若,且A∩B≠∅,求实数k的取值范围.