(本小题满分15分)
如图(1)所示,直角梯形中,
,
,
,
.过
作
于
,
是线段
上的一个动点.将
沿
向上折起,使平面
平面
.连结
,
,
(如图(2)).
(Ⅰ)取线段的中点
,问:是否存在点
,使得
平面
?若存在,求出
的长;不存在,说明理由;
(Ⅱ)当时,求平面
和平面
所成的锐二面角的余弦值.
已知函数
(1)讨论的单调性.
(2)证明:(
,e为自然对数的底数)
【改编】如图,在中,
为
边上的高,
,
,沿
将
翻折,使得
,得到几何体
。
(1)求证:;
(2)求与平面
所成角的正切值;
(3)求二面角的余弦值.
如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有一条的为第一层,有二条的为第二层, ,依次类推.现有一颗小弹子从第一层的通道里向下运动,若在通道的分叉处,小弹子以相同的概率落入每个通道.记小弹子落入第层第
个竖直通道(从左至右)的概率为
,某研究性学习小组经探究发现小弹子落入第
层的第
个通道的次数服从二项分布,请你解决下列问题.
(Ⅰ)试求及
的值,并猜想
的表达式;(不必证明)
(Ⅱ)设小弹子落入第6层第个竖直通道得到分数为
,其中
,试求
的分布列及数学期望.
(本小题满分12分)已知.
(Ⅰ)求的最小正周期和对称轴方程;
(Ⅱ)在中,角
所对应的边分别为
,若有
,
,
,求
的面积.
选修4-5:不等式选讲
设函数,
(Ⅰ)证明
(Ⅱ)若不等式的解2集非空,求
的取值范围。