(本小题满分15分) 如图(1)所示,直角梯形中,,,,.过作于,是线段上的一个动点.将沿向上折起,使平面平面.连结,,(如图(2)). (Ⅰ)取线段的中点,问:是否存在点,使得平面?若存在,求出 的长;不存在,说明理由; (Ⅱ)当时,求平面和平面所成的锐二面角的余弦值.
已知数列中,. (1)设,求证:数列是常数列,并写出其通项公式; (2)设,求证:数列是等比数列,并写出其通项公式; (3)求数列的通项公式.
函数的图象如图所示. (1)求函数的解析式; (2)已知,求的值.
△ABC中,AB=AC,M、N分别为AB、AC的中点,且BNCM,求△ABC的顶角的余弦值.
已知,当k为何值时. (1)与垂直; (2)与平行,平行时它们是同向还是反向.
已知抛物线,直线l与抛物线交于A、B,且,点在AB上,又. (1)求直线l的方程; (2)求a的值; (3)求△OAB的面积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号