(本小题满分15分)
如图(1)所示,直角梯形中,
,
,
,
.过
作
于
,
是线段
上的一个动点.将
沿
向上折起,使平面
平面
.连结
,
,
(如图(2)).
(Ⅰ)取线段的中点
,问:是否存在点
,使得
平面
?若存在,求出
的长;不存在,说明理由;
(Ⅱ)当时,求平面
和平面
所成的锐二面角的余弦值.
(1)已知函数y=ln(-x2+x-a)的定义域为(-2,3),求实数a的取值范围;
(2)已知函数y=ln(-x2+x-a)在(-2,3)上有意义,求实数a的取值范围.
某工厂生产一种产品的原材料费为每件40元,若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元。
(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:,试问生产多少件产品,总利润最高?(总利润=总销售额-总的成本)
已知命题p:x1、x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥对任意实数m∈[-1,1]恒成立;命题q:不等式ax2+2x-1>0有解。若命题p是真命题,命题q为假命题,求实数a的取值范围。
已知tan(α+)=-3,α∈(0,
).
(1)求tanα的值;
(2)求sin(2α-)的值.
已知圆与抛物线
相交于
,
两点
(Ⅰ)求圆的半径,抛物线的焦点坐标及准线方程;
(Ⅱ)设是抛物线上不同于
的点,且在圆外部,
的延长线交圆于点
,直线
与
轴交于点
,点
在直线
上,且四边形
为等腰梯形,求点
的坐标.