如图,抛物线y=x2+mx+n与直线y=-
x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).
(Ⅰ)求抛物线的解析式和tan∠BAC的值;
(Ⅱ)在(Ⅰ)条件下:
(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?
如图,OA.OB是⊙O的半径且OA⊥OB,作OA的垂直平分线交⊙O于点C.D,连接CB.AB.
求证:∠ABC=2∠CBO.
三角形中有3个角、3条边共6个元素,由其中的已知元素,求出所有未知元素的过程,叫做解三角形.
已知△ABC中,AB=,∠B=45°,BC=1+
,解△ABC.
某纪念币从2013年11月11日起开始上市,通过市场调查得知该纪念币每1枚的市场价y(单位:元)与上市时间x(单位:天)的数据如下:
上市时间x天 |
4 |
10 |
36 |
市场价y元 |
90 |
51 |
90 |
(1)根据上表数据,在某一特定时期内,可从下列函数中选取一个恰当的函数描述纪念币的市场价y与上市时间x的变化关系:
①y=ax+b(a≠0);②y=a(x-h)2+k( a≠0);③y=(a≠0).
你可选择的函数的序号是 .
(2)利用你选取的函数,求该纪念币上市多少天时市场价最低,最低价格是多少?
在一个不透明的袋子中,放入除颜色外其余都相同的1个白球、2个黑球、3个红球.搅匀后,从中随机摸出2个球.
(1)请列出所有可能的结果:
(2)求每一种不同结果的概率.
如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,请你结合图片信息,解答下列问题:
(1)加油过程中的常量是,变量是;
(2)请用合适的方式表示加油过程中变量之间的关系.