游客
题文

(本小题满分10分)已知函数,且当时,的最小值为2,
(1)求的单调递增区间;
(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再把所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.

科目 数学   题型 解答题   难度 中等
知识点: 多面角及多面角的性质
登录免费查看答案和解析
相关试题

【挑战自我】
如图,已知PD⊥平面ABCD,AD⊥DCAD∥BC,PD∶DCBC=1∶1∶.
(1)求二面角D-PBC的正切值;
(2)当AD∶BC的值是多少时,能使平面PAB⊥平面PBC?证明你的结论.

已知椭圆方程,过B(-1,0)的直线l交随圆于C、D两点,交直线x=-4于E点,B、E分的比分λ1、λ2.求证:λ1+λ2=0

在长方体ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1—EC—D的大小为.

如图,已知平行六面体ABCDA1B1C1D1的底面是菱形且∠C1CB=∠C1CD=∠BCD=60°,
(1)证明C1CBD
(2)假定CD=2,CC1=,记面C1BDα,面CBDβ,求二面角αBDβ的平面角的余弦值;
(3)当的值为多少时,可使A1C⊥面C1BD

已知抛物线y=x2-1上一定点B(-1,0)和两个动点PQ,当P在抛物线上运动时,BPPQ,则Q点的横坐标的取值范围是_________

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号