(本小题满分12分)已知函数..
(1)当时,求
的单调区间;
(2)若在区间(1,2)上不具有单调性,求a的取值范围.
已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x元/件(1≤x≤2),今年新增的年销量(单位:万件)与(2-x)2成正比,比例系数为4.
(1)写出今年商户甲的收益y(单位:万元)与今年的实际销售单价x间的函数关系式;
(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.
如图,斜四棱柱的底面
是矩形,平面
⊥平面
,
分别为
的中点.
求证:(1);
(2)∥平面
.
已知圆.
(1)若直线过点
,且与圆
相切,求直线
的方程;
(2)若圆的半径为4,圆心
在直线
:
上,且与圆
内切,求圆
的方程.
已知为实数,
:点
在圆
的内部;
:
都有
.
(1)若为真命题,求
的取值范围;
(2)若为假命题,求
的取值范围;
(3)若“且
”为假命题,且“
或
”为真命题,求
的取值范围.
如图,设椭圆:
的离心率
,顶点
的距离为
,
为坐标原点.
(1)求椭圆的方程;
(2)过点作两条互相垂直的射线,与椭圆
分别交于
两点.
(ⅰ)试判断点到直线
的距离是否为定值.若是请求出这个定值,若不是请说明理由;
(ⅱ)求的最小值.