(本小题满分12分)
设数列满足
,且对任意
,函数
满足
.
(1)求数列的通项公式;
(2)设,记数列
的前项和为
,求证:
.
已知函数的图象为曲线E.
(1)若a = 3,b = -9,求函数f(x)的极值;
(2)若曲线E上存在点P,使曲线E在P点处的切线与x轴平行,求a,b的关系.
已知函数.
(1)若函数在区间其中a >0,上存在极值,求实数a的取值范围;
(2)如果当时,不等式
恒成立,求实数k的取值范围.
已知函数(
).
(1)若的定义域和值域均是
,求实数
的值;
(2)若对任意的,
,总有
,求实数
的取值范围.
已知公差不为零的等差数列,满足
且
,
,
成等比数列.
(1)求数列的通项公式;
(2)设,求数列
前
项的和为
.
已知函数;
(1).求的周期和单调递增区间;
(2).若关于x的方程在
上有解,求实数m的取值范围.