计算:
(1) .
(2) .
如图,正方形 的边长为2, 为 的中点, 是 延长线上的一点,连接 交 于点 , .
(1)求 的值;
(2)如图1,连接 ,在线段 上取一点 ,使 ,连接 ,求证: ;
(3)如图2,过点 作 于点 ,在线段 上取一点 ,使 ,连接 , .将 绕点 旋转,使点 旋转后的对应点 落在边 上.请判断点 旋转后的对应点 是否落在线段 上,并说明理由.
已知函数 , 为常数)的图象经过点 .
(1)求 , 满足的关系式;
(2)设该函数图象的顶点坐标是 ,当 的值变化时,求 关于 的函数解析式;
(3)若该函数的图象不经过第三象限,当 时,函数的最大值与最小值之差为16,求 的值.
我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于 ,可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.
(1)已知凸五边形 的各条边都相等.
①如图1,若 ,求证:五边形 是正五边形;
②如图2,若 ,请判断五边形 是不是正五边形,并说明理由:
(2)判断下列命题的真假.(在括号内填写“真”或“假”
如图3,已知凸六边形 的各条边都相等.
①若 ,则六边形 是正六边形;
②若 ,则六边形 是正六边形.
安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.
(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?
(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;
(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.