为更好地响应丽水市的创国卫活动,某校抽取了2015届九年级部分同学对饮食卫生知识进行了测试,并将测试结果按照A,B,C,D四个等级绘制成如下两个统计图,请结合图中信息解答下列问题:
(1)请把条形统计图补充完整,并求出扇形统计图中B部分所对应的圆心角的度数;
(2)该校共有学生1 000人,若把测试结果为A的记为优秀,请根据样本估计全校饮食卫生知识了解情况达到优秀的学生人数是多少?
(3)为进一步提高学生对饮食卫生知识的知晓率,学校又连续组织了两次测试,最后一次达到优秀的学生增加到750人,求平均每次的增长率.
解分式方程:
如图,已知一次函数y=-x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.
(1)求点A和点B的坐标;
(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.
如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5,在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK。
(1)若∠1=70°,求∠MKN的度数;
(2)当折痕MN与对角线AC重合时,试求△MNK的面积.
(3)△MNK的面积能否小于0.5?若能,求出此时∠1的度数;若不能,试说明理由;
下表给出了代数式与
的一些对应值:
x |
… |
0 |
1 |
2 |
3 |
4 |
… |
![]() |
… |
3 |
-1 |
3 |
… |
(1)请在表内的空格中填入适当的数;
(2)设y=+bx+c,则当x取何值时,y>0?
(3)请说明经过怎样平移函数y=+bx+c的图象得到函数y=
+1的图象
“奔跑吧,兄弟!”节目组,预设计一个新的游戏:“奔跑”路线需经A、B、C、D四地.如图,
其中A、B、C三地在同一直线上,D地在A地北偏东30º方向、在C地北偏西45°方向.C地在A地北偏东75°方向.且BC=CD=20m.
(1)证明三角形BCD是等边三角形;
(2)从A地跑到D地的路程大约是多少?(最后结果保留整数,参考数据:sin15°=0.65,cos15°=0.97,tan15°=0.27,≈1.4)