如图1是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.
(1)这个几何体模型的名称是 .
(2)如图2是根据a,b,h的取值画出的几何体的主视图和俯视图(图中实线表示的长方形),请在网格中画出该几何体的左视图.
(3)若h=a+b,且a,b满足a2+b2﹣a﹣6b+10=0,求该几何体的表面积.
先化简,再求值: ;其中 , .
如图,在四边形 中, , , 分别平分 , ,并交线段 , 于点 , (点 , 不重合).在线段 上取点 , (点 在 之间),使 .当点 从点 匀速运动到点 时,点 恰好从点 匀速运动到点 .记 , ,已知 ,当 为 中点时, .
(1)判断 与 的位置关系,并说明理由.
(2)求 , 的长.
(3)若 .
①当 时,通过计算比较 与 的大小关系.
②连结 ,当 所在直线经过四边形 的一个顶点时,求所有满足条件的 的值.
某经销商3月份用18000元购进一批 恤衫售完后,4月份用39000元购进一批相同的 恤衫,数量是3月份的2倍,但每件进价涨了10元.
(1)4月份进了这批 恤衫多少件?
(2)4月份,经销商将这批 恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出 件,然后将 件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.
①用含 的代数式表示 .
②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.
如图, , 为 上两点,且在直径 两侧,连结 交 于点 , 是 上一点, .
(1)求证: .
(2)点 关于 的对称点为 ,连结 .当点 落在直径 上时, , ,求 的半径.
已知抛物线 经过点 , .
(1)求 , 的值.
(2)若 , 是抛物线上不同的两点,且 ,求 的值.