(本小题满分12分)已知椭圆C:的离心率为
,连接椭圆四个顶点形成的四边形面积为4
.
(1)求椭圆C的标准方程;
(2)过点A(1,0)的直线与椭圆C交于点M,N,设P为椭圆上一点,且O为坐标原点,当
时,求t的取值范围.
甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3道题,每人答对其中2题就停止答题,即为闯关成功。已知6道备选题中,甲能答对其中的4道题,乙答对每道题的概率都是。(Ⅰ)求甲、乙至少有一人闯关成功的概率;
(Ⅱ)设乙答对题目的个数为,求
的方差;
(Ⅲ)设甲答对题目的个数为
,求
的分布列及数学期望。
已知函数在
内有极值,求实数
的范围。
(本小题满分14分)设函数的图象与x轴相交于一点
,且在点
处的切线方程是
(I)求t的值及函数的解析式;
(II)设函数
(1)若的极值存在,求实数m的取值范围。
(2)假设有两个极值点
的表达式
并判断
是否有最大值,若有最大值求出它;若没有最大值,说明理由。
(本小题满分12分)
已知定义在区间上的函数为奇函数且
(1)求实数m,n的值;
(2)求证:函数上是增函数。
(3)若恒成立,求t的最小值。