一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
(1)请把字母标记在正方体相应的顶点处(不需要说明理由)
(2)判断平面与平面
的位置关系.并证明你的结论.
(3)证明:直线平面
在平面直角坐标系xOy中,设动点P,Q都在曲线C:(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ的中点M与定点A(1,0)间的距离为d,求d的取值范围.
已知二阶矩阵M有特征值及对应的一个特征向量
,且M
=
.求矩阵M.
如图,△ABC内接于圆O,D为弦BC上一点,过D作直线DP//AC,交AB于点E,交圆O在A点处的切线于点P.求证:△PAE∽△BDE.
设函数,其图象与
轴交于
,
两点,且x1<x2.
(1)求的取值范围;
(2)证明:(
为函数
的导函数);
(3)设点C在函数的图象上,且△ABC为等腰直角三角形,记
,求
的值.
设数列{an}的首项不为零,前n项和为Sn,且对任意的r,tN*,都有
.
(1)求数列{an}的通项公式(用a1表示);
(2)设a1=1,b1=3,,求证:数列
为等比数列;
(3)在(2)的条件下,求.